Cookie Policy

Welcome to SR-NIEL. This site uses cookies. Read our policy.

Learn more
Logo HelMod small

SR-NIEL – 7

Screened Relativistic (SR) Treatment for NIEL Dose

Nuclear and Electronic Stopping Power Calculator

(version 10.13)

Proton High AMS02 small

 

A. Akkerman and J. Barak (2006). New Partition Factor Calculations for Evaluating the Damage of Low Energy Ions in Silicon,    IEEE Trans. on Nucl. Sci. vol. 53, 3667; doi: https://doi.org/10.1109/TNS.2006.884382.

 

T. Angelescu et al. (1994).A neutron irradiation facility for damage studies, Nucl. Instr. and Meth. in Phys. Res., vol. 345, 2, pp. 303-307: doi: https://doi.org/10.1016/0168-9002(94)91006-5

 

ASTM E722-19 (2019). Standard Practice for Characterizing Neutron Fluence Spectra in Terms of an Equivalent Monoenergetic Neutron Fluence for Radiation-Hardness Testing of Electronics (https://www.astm.org/catalogsearch/result/?q=E722-19); see also previously published standards: ASTM E722–09 (2009); ASTM E722-14 (2014).

 

S. Bartocci, R. Battiston, W. J. Burger et al., Galactic Cosmic-Ray Hydrogen Spectra in the 40–250 MeV Range Measured by the High-energy Particle Detector (HEPD) on board the CSES-01 Satellite between 2018 and 2020, Astrophys. J. 901, 8; https://doi.org/10.3847/1538-4357/abad3e

 

C. Baur, M. Gervasi, P. Nieminen, S. Pensotti, P.G. Rancoita, M. Tacconi, (2014)
NIEL dose dependence for solar cells irradiated with electrons and protons, Proc. of the 14th ICATPP, September 23--27 2013, Villa Olmo, Como, Italy, S. Giani, C. Leroy, L. Price, P.G. Rancoita and R. Ruchti, Editors, World Scientific, Singapore, 698-713; ISBN:
978-981-4603-15-7;
http://www.worldscientific.com/doi/pdf/10.1142/9789814603164_0111
http://arxiv.org/abs/1312.0402

 

 

M.J. Boschini, C. Consolandi, M. Gervasi, S.Giani, D.Grandi, V. Ivanchenko and P.G. Rancoita, (2010)
Geant4-based application development for NIEL calculation in the Space Radiation Environment, Proc. of the 11th ICATPP Conference, October 5-9 2009, Villa Olmo, Como, Italy, World Scientific, Singapore, 698-708, IBSN: 10-981-4307-51-3;
http://www.worldscientific.com/doi/pdf/10.1142/9789814307529_0113

   

 

M.J. Boschini, C. Consolandi, M. Gervasi, S. Giani, D. Grandi, V. Ivantchenko, S. Pensotti, P.G. Rancoita, M. Tacconi, (2011), Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particle from Low Energy up to relativistic regime in Space Radiation Environment, Proc. of the 12th ICATPP Conference, October 7-8 2010, Villa Olmo, Como, Italy, World Scientific, Singapore, 9-23, IBSN: 978-981-4329-02-6;
http://www.worldscientific.com/doi/pdf/10.1142/9789814329033_0002
http://arxiv.org/pdf/1011.4822v7.pdf

 

 

M.J. Boschini, C. Consolandi, M. Gervasi, S. Giani, D. Grandi, V. Ivanchenko, P. Nieminem, S. Pensotti, P.G. Rancoita and M. Tacconi, (2012),
Nuclear and Non-Ionizing Energy-Loss of electrons with low and relativistic energies in materials and space environment, Proc. of the 13th ICATPP Conference, October 3-7 2011, Villa Olmo, Como, Italy, World Scientific, Singapore, 961-982, IBSN: 978-981-4405-06-5;
http://www.worldscientific.com/doi/pdf/10.1142/9789814405072_0147
http://arxiv.org/pdf/1111.4042v4.pdf

 

 

 M.J. Boschini, C. Consolandi, M. Gervasi, S. Giani, D. Grandi, V. Ivanchenko, P. Nieminem, S. Pensotti, P.G. Rancoita, M. Tacconi, (2013),
An expression for the Mott cross section of electrons and positrons on nuclei with Z up to 118, Rad. Phys. Chem. 90, 39-66; doi: 10.1016/j.radphyschem.2013.04.020,
http://www.sciencedirect.com/science/article/pii/S0969806X13002454
http://arxiv.org/pdf/1304.5871v1.pdf

 

 

M.J. Boschini, C. Consolandi, M. Gervasi, S. Giani, D. Grandi, V. Ivanchenko, P. Nieminem, S. Pensotti, P.G. Rancoita, M. Tacconi (2013), An expression for the Mott cross section of electrons and positrons on nuclei with Z up to 118, Rad. Phys. Chem. 90, 39-66; doi: 10.1016/j.radphyschem.2013.04.020, http://www.sciencedirect.com/science/article/pii/S0969806X13002454; http://arxiv.org/pdf/1304.5871v1.pdf

 

M.Bosetti, N.Croitoru, C.Furetta, C.Leroy, S.Pensotti, P.G.Rancoita, M.Rattaggi, M.Redaelli, A.Seidman, DLTS measurements of Energetic levels generated in silicon detectors, Nucl. Instr. and Meth. in Phys. Res. A 361 (1995), 461--465; doi: https://doi.org/10.1016/0168-9002(95)00277-4

 

R. Campesato, C. Baur, M. Casale, M. Gervasi, E. Gombia, E. Greco, A. Kingma, P.G. Rancoita, D. Rozza, M. Tacconi (2018), NIEL DOSE and DLTS Analyses on Triple and Single Junction solar cells irradiated with electrons and protons, Proceedings of 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, Hawaii, June 10-15, 2018; Publication Year: 2018, p. 3768-3772, doi: 10.1109/PVSC.2018.8548237; available at https://arxiv.org/abs/1811.11583

 

R. Campesato, C. Baur, M. Casale, M. Gervasi, E. Gombia, E. Greco, A. Kingma, P.G. Rancoita, D. Rozza, M. Tacconi (2018), Effects of irradiation on Triple and Single Junction InGaP/GaAs/Ge solar cells, Proceedings of the 35th European PV Solar Energy Conference, Brussels, 24-28 September 2018, 959-964, doi: 10.4229/35thEUPVSEC20182018-4CO.5.4; available at http://arxiv.org/abs/1809.07157 

 

R. Campesato, C. Baur, M. Carta, M. Casale, D. Chiesa, M. Gervasi, E. Gombia, E. Greco, A. Kingma, M. Nastasi, E. Previtali, P.G. Rancoita, D. Rozza, E. Santoro, M. Tacconi (2019),  NIEL Dose Analysis on triple and single junction InGaP/GaAs/Ge solar cells irradiated with electrons, protons and neutrons, Proceedings of the 2019 IEEE 46th Photovoltaic Specialist Conference (PVSC), June 16-21 (2019), Chicago (USA), Book Series: IEEE Photovoltaic Specialists Conference, pages 2381-2384, doi: 10.1109/PVSC40753.2019.8980581; available at https://arxiv.org/abs/1911.08900

 

A. Colder, N. Croitoru, P. D’Angelo, M. De Marchi, G. Fallica, S. Leonardi, M. Levalois, S. Marcolongo, P. Marie, R. Modica, P.G. Rancoita and A. Seidman, Study of Radiation Effects on Bipolar Transistors, Nucl. Instr. and Meth. in Phys. Res. B 179 (2001), 397; doi: https://doi.org/10.1016/S0168-583X(01)00582-1
https://www.sciencedirect.com/science/article/pii/S0168583X01005821

 

C. Consolandi, P.D’Angelo, G. Fallica, R. Modica, R. Mangoni, S. Pensotti and P.G. Rancoita, (2006), Systematic Investigation of Monolithic Bipolar Transistors Irradiated with Neutrons, Heavy Ions and Electrons for Space Applications, Nucl. Instr. and Meth. in Phys. Res. B 252 (2006), 276, doi:10.1016/j.nimb.2006.08.018
http://www.sciencedirect.com/science/article/pii/S0168583X0600913X

 

N.Croitoru, R.Dahan, P.G.Rancoita, M.Rattaggi, G.Rossi and A.Seidman, Study of resistivity and majority carrier concentration of silicon detectors damaged by neutron irradiation up to 1016n/cm2, Nucl.Instr. and Meth.in Phys. Res. B 124 (1997), 542—548: doi: https://doi.org/10.1016/S0168-583X(97)00055-4

 

S. Della Torre, G. Cavallotto, D. Besozzi, M. Gervasi, G. La Vacca, M. S. Nobile and P.G. Rancoita (2023), Advantages of GPU-accelerated approach for solving the Parker equation in the heliosphere, POS  (ICRC2023) 1290; https://pos.sissa.it/444/1290/pdf

 

[ECSS-E-ST-10-12C] European Cooperation for Space Standardization, "Methods for the calculation of radiation received and its effects, and a policy for design margins", 15 November 2008.

 

[ECSS-E-HB-10-12A] European Cooperation for Space Standardization, "Calculation of radiation and its effects and margin policy handbook", 17 December 2010.

 

[ECSS-E-ST-10-04C Rev. 1] European Cooperation for Space Standardization, on "Space Environment: Technical Report" ECSS (2020);

https://ecss.nl/standard/ecss-e-st-10-04c-rev-1-space-environment-15-june-2020/

 

Esbensen, H. et al. (1978). Random and channeled energy loss in thin germanium and silicon crystals for positive and negative 2-15-GeV/c pions, kaons, and protons, Phys. Rev. B 18, 1039; doi: https://doi.org/10.1103/PhysRevB.18.1039

 

J.M. Fernandez-Varea, R. Mayol and F. Salvat (1993).    Cross sections for elastic scattering of fast electrons and positrons by atoms, Nucl. Instr. and Meth. in Phys. Res. B82, 39-45; doi: https://doi.org/10.1016/0168-583X(93)95079-K

 

B.Hahn et al. (1956). High-Energy Electron Scattering and the Charge Distributions of Selected Nuclei, Phys. Rev. 101 1131; doi: https://doi.org/10.1103/PhysRev.101.1131

 

Hancock, S., James, F., Movchet, J., Rancoita, P.G. and Van Rossum, L. (1983). Energy loss and energy straggling of protons and pions in the momentum range 0.7 to 115 GeV/c, Phys. Rev. A 28, 615--620; doi: https://doi.org/10.1103/PhysRevA.28.615

 

Hancock, S., James, F., Movchet, J., Rancoita, P.G. and Van Rossum, L. (1984). Energy-loss distributions for single particles and several particles in a thin silicon absorber, Nucl.Instr. and Meth. in Phys. Res. B 1, 16, doi: 10.1016/0168-583X(84)90472-5.

 

M. Huhtinen (2002). Simulation of non-ionising energy loss and defect formation in silicon, Nucl. Instr. and Meth. A 491, 194-215; doi: https://doi.org/10.1016/S0168-9002(02)01227-5

 

ICRUM - International Commission on Radiation Units and Measurements - (1984), Stopping Powers for Electroncs and Positrons, ICRU Report 37, Bethesda, MD; doi: https://doi.org/10.1093/jicru_os19.2.iii

 

ICRUM - International Commission on Radiation Units and Measurements - (1993), Stopping Powers and Ranges for Protons and Alpha Particles, ICRU Report 49, Bethesda, MD; doi: https://doi.org/10.1093/jicru_os25.2.iii; webaddress: https://www.icru.org/report/stopping-power-and-ranges-for-protons-and-alpha-particles-report-49/

 

P. Jiggens, D. Heynderickx, I. Sandberg, P. Truscott, O. Raukunen and R. Vainio (2018). Updated Model of the Solar Energetic Proton Environment in Space, J. Space Weather Space Clim. 8: A31 (22pp);  https://doi.org/10.1051/swsc/2018010

 

I. Jun et al. (2003). NIEL for heavy ions: an analytical approach, IEEE Trans. on Nucl. Sci 50, 1924-1928; doi: https://doi.org/10.1109/TNS.2003.820762

 

I. Jun et al. (2004). Alpha particle nonionizing energy loss (NIEL), IEEE Trans. on Nucl. Sci 51, 3207-3210; doi: https://doi.org/10.1109/TNS.2004.839150

 

I. Jun (2017), Private communication regarding hadronic NIEL contribution. See also the web page "Hadronic NIEL contribution for protons and alpha particles".

 

C. Leroy and P.G. Rancoita (2007), Particle Interaction and Displacement Damage in Silicon Devices operated in Radiation Environments Reports on Progress in Physics 70, 493-625, doi:10.1088/0034-4885/70/4/R0
http://iopscience.iop.org/0034-4885/70/4/R01/

 

 

 

C. Leroy and P.G. Rancoita (2011), Principles of Radiation Interaction in Matter and Detection - 3rd Edition -, World Scientific, Singapore, ISBN-978-981-4360-51-7;
http://www.worldscientific.com/worldscibooks/10.1142/8200

 

 

 

 

C. Leroy and P.G. Rancoita (2012), Silicon Solid State Devices and Radiation Detection, World Scientific, Singapore, ISBN-978-981-4390-0-0;
http://www.worldscientific.com/worldscibooks/10.1142/8383.

 

 

 

  

9167.coverC. Leroy and P.G. Rancoita (2016), Principles of Radiation Interaction in Matter and Detection - 4th Edition -, World Scientific. Singapore, ISBN-978-981-4603-18-8 (printed); ISBN.978-981-4603-19-5 (ebook); 

https://www.worldscientific.com/worldscibooks/10.1142/9167#t=aboutBook; it is also partially accessible via google books.




 

 

 Z. Li, H.W.Kraner, E.Verbiskaya, V.Eremin, A.Ivanov, M.Rattaggi, P.G.Rancoita, F.Rubinelli, S.J.Fonash, C.Dale and P.Marshall, Investigation of the Oxigen-Vacancy (A-center) defect complex profile in neutron irradiated high resistivity silicon junction particle detectors, IEEE Trans. on Nucl. Science, vol 39, No.6 (1992), 1730; doi: 10.1109/23.211360

 

K.L. Luke and M.G. Buehler, "An exact, closed-form expression of the integral chord-length distribution for the calculation of single-event upsets induced by cosmic rays", J. Appl. Phys. 64 (1988), 5132; https://doi.org/10.1063/1.342420

 

 M.J. Norgett, M. Robinson and I.M. Torrens (1975), Nucl. Engin. and Des. 33, 50; https://doi.org/10.1016/0029-5493(75)90035-7.

 

K.W. Ogilvie, M. A. Coplan (1995). Solar wind composition, Rev. of Geophysics  33, pages 615-622; 

https://articles.adsabs.harvard.edu/pdf/1958ApJ...128..664P

 

A. Papaioannou, A. Anastasiadis, I. Sandberg and P. Jiggens (2018). Nowcasting of Solar Energetic Particle Events using near real-time Coronal Mass Ejection characteristics in the framework of the FORSPEF tool. J. Space Weather Space Clim. 8: A37 (14pp); https://doi.org/10.1051/swsc/2018024

 

E.N. Parker (1958). Dynamics of the Interplanetary Gas and Magnetic Fields, Astrophys. J. 128, 664;  

https://articles.adsabs.harvard.edu/pdf/1958ApJ...128..664P

 

E.N. Parker (1965). The passage of energetic charged particles through interplanetary space, Planetary and Space Science 13, Pages 9-49; 

https://doi.org/10.1016/0032-0633(65)90131-5

 

Pratt, R. H., Tseng, H. K., Lee, C. M., Kissel, L., MacCallum, C., and Riley, M. (1977). Bremsstrahlung energy spectra from electrons of kinetic energy 1 keV < T1 < 2000 keV incident on neutral atoms 2 < Z < 92, Atomic Data Nucl. Data Tables 20, 175; doi: https://doi.org/10.1016/0092-640X(77)90045-6. Errata in 26, 477 (1981); doi: https://doi.org/10.1016/0092-640X(81)90015-2.

 

Price, W.J. (1964). Nuclear Radiation Detection - 2nd Edition -, McGraw-Hill Book Company, New York.

 

Rancoita, P.G. (1984). Silicon detectors and elementary particle physics, J. Phys. G: Nucl.Phys. 10, 299–319, doi:10.1088/0305-4616/10/3/007.

 

P.G.Rancoita and A.Seidman (1982), Silicon detectors in high energy physics : physics and applications, La Rivista del Nuovo Cimento vol.5, N.7, 1—75; doi: https://doi.org/10.1007/BF02740017

 

J. S. Rankin, D. J. McComas, R. A. Leske et al. (2022). Anomalous Cosmic-Ray Oxygen Observations into 0.1 au, Astrophys. J. 925, 9; https://doi.org/10.3847/1538-4357/ac348f

 

M. Robinson, (1972), The dependence of radiation effects on the primary recoil energy, Proc. Int. Conf. Radiation-Induced Voids in Metal, Albany, NY, 397–429.

 

Seltzer, S. M. and Berger, M. J. (1985). Bremsstrahlung spectra from electron interactions with screened atomic nuclei and orbital electrons, Nucl. Instr. Meth. B12, 95; doi: https://doi.org/10.1016/0168-583X(85)90707-4 

 

Sternheimer, R.M., Berger, M.J. and Seltzer, S.M. (1984). Density effect for the ionization loss of charged particles in various substances, Atomic Data and Nucl. Data Tables 30, 261; doi: https://doi.org/10.1016/0092-640X(84)90002-0

 

L.  Svalgaard and Y. Kamide (2013), ASYMMETRIC SOLAR POLAR FIELD REVERSALS, APJ 763:23 (6pp); http://dx.doi.org/10.1088/0004-637X/763/1/23

 

A. Vogt, B. Heber, A. Kopp, M. S. Potgieter and R. D. Strauss (2018). Jovian electrons in the inner heliosphere, Astr. and AstroPhys. 613:A28 (pp8); https://doi.org/10.1051/0004-6361/201731736

 

K. Whitman et al. (2023), Review of Solar Energetic Particle Prediction Models, Adv. in Space Research 72, Pages 5161-5242; 

https://doi.org/10.1016/j.asr.2022.08.006

 

E. Zeitler and A. Olsen (1956). Screening Effects in Elastic Electron Scattering, Phys. Rev. 136 (1956), A1546-A1552; doi: https://doi.org/10.1103/PhysRev.136.A1546

 

Yihua Zheng and Rebekah M. Evans (2014).  Solar Energetic Particles (SEPs),;  

https://ccmc.gsfc.nasa.gov/RoR_WWW/SWREDI/2014/SEP_YZheng_20140602.pdf