Cookie Policy

Welcome to SR-NIEL. This site uses cookies. Read our policy.

Learn more
Logo HelMod small

SR-NIEL – 7

Screened Relativistic (SR) Treatment for NIEL Dose

Nuclear and Electronic Stopping Power Calculator

(version 10.16)

Proton High AMS02 small

Physical constants used in computation of SR-NIEL code are from appendix A.1 (pp. 1108-1112) of [C. Leroy and P.G. Rancoita (2016)].

Atomic weights for target elements, used in SR-NIEL code, are from IUPAC (International Union of Pure and Applied Chemistry) and  were published by [J. Meija et al. (2016)].
For 12 of these elements, as discussend in  the caption of Table 2, the standard atomic weight is given as an atomic-weight interval with the symbol [a,b] to denote the set of atomic-weight values in normal materials; The average value of the range is taken for computation in SR-NIEL code. Atomic weights are complemented, when needed, by those listed at NIST (Standard Reference Database 144, last update: January 2015).

Atomic weight for projectile isotops, except for the proton and alpha particle masses, is the most abundand isotope (MAI). The isotopic compositions data are those from NIST and were published by [M. Berglund et al. (2009)]. The relative atomic masses of the isotopes data were published by [M. Wang et al. (2012)].


 

References

 

9167.coverC. Leroy and P.G. Rancoita (2016), Principles of Radiation Interaction in Matter and Detection - 4th Edition -, World Scientific. Singapore, ISBN-978-981-4603-18-8 (printed); ISBN.978-981-4603-19-5 (ebook).https://www.worldscientific.com/worldscibooks/10.1142/9167#t=aboutBook



 

J. Meija et al, Pure and Applied Chemistry. Vol. 88, 3, pp. 265–291, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: 10.1515/pac-2015-0305, February 2016

Michael Berglund and Michael E. Wieser, Pure Appl. Chem., Vol. 83, No. 2, pp. 397-410, 2011

M. Wang et al.,Chinese Physics, C 36, pp. 1287-1602, 2012