General
Registered and Specific Users Login
From version 3.0 the sr-niel website allows one to access to additional functionalities to be gradually implemented.
Among additional features no longer freely accessible, there are those exploiting NIEL data not yet published which might be revised as a result of ongoing scientific discussions. Thus, a motivated registration is needed to get use of them.
Registered Users
Potentially interested users should contact us by email (
The login formation and password will be provided directly to the final user. Personal information used for the registration process will be treated according to GDPR european policy.
Currently, additional functionalities implenented into NIEL calculators available to registered users are:
- electron NIEL with Akkerman partition function;
- proton and ion NIEL with Akkerman partition function;
- NIEL dose calculators for neutrons and neutron spectral fluence in some elements (C, N, Si, Ga, As, from version 3.5.1 0, Al, P, In, Cd, Te, Ge, Zn, Se, Sb, from version 3.9 Cu, Hg, Pb, S, Sn, from version 3.9.2 B, Bi, Cl, Tl, from version 4.5.0 Li, Ti, Mn, Br, Sr, Nb, Mo, Ag, I, Ba, La, Eu, U and from version 4.6.0 also H, He, Be, F, Na, Mg, Ar, K, Ca, V, Cr, Fe, Co, Ni) and their compounds, using Robinson and Akkerman partition functions. The complete set of nuclei for neutron dose calculators was made avaible with version 5.0.0 and is illustrated at this page. From SR-NIEL – 7 version 8.0, the neutron damage functions are available also using NJOY-2021 code. From version 8.5, NIEL dose calculation for neutron using Robinson and Akkerman partition functions are available obtained with NJOY-2021.
In addition, the following long write-ups are available to registered users:
- NIEL for Electrons and Protons (with only Coulomb scattering and, also, including hadronic contribution) in Silicon employing Robinson and Akkerman partition functions;
- NIEL dose calculation for neutron using Robinson and Akkerman partition functions;
- comparison of Damage Functions obtained with Akkerman and Robinson Partition Functions for some compounds;
- determination of the Damage Function at 1 MeV for Si and some compounds.
Furthermore, from version 10.20, a FAQ section is available to registered users.
Specific Users
![]() |
|
![]() |
From version 10.2, further additional functionalities are available to specific users involved in SR-NIEL -7 development and ASIF activities on Space Radiation Environment.
Version History and Citation
The website is currently supported within the space radiation environment activities of ASIF (ASI - Italian Space Agency -Supported Irradiation Facilities).
Example of how to reference this online database: (Replace year, month with database access date)
M.J. Boschini, P.G. Rancoita and M. Tacconi (2014), SR-NIEL–7 Calculator: Screened Relativistic (SR) Treatment for NIEL Dose, Nuclear and Electronic Stopping Power Calculator (version 11.0); website https://www.sr-niel.org/ accessed on [year, month ].
Optional addition:
Screened Relativistic Treatments from Chapters 2, 7 and 11 of C. Leroy and P.G. Rancoita (2016), Principles of Radiation Interaction in Matter and Detection - 4th Edition -, World Scientific, Singapore (see also references therein); C. Baur et al. (2014), NIEL dose dependence for solar cells irradiated with electrons and protons, Proc. of the 14th ICATPP, September 23--27 2013, Villa Olmo, Como, Italy, S. Giani, C. Leroy, L. Price, P.G. Rancoita and R. Ruchti, Editors, World Scientific, Singapore, 698-713; Chapter 1 of C. Leroy and P.G. Rancoita (2012), Silicon Solid State Devices and Radiation Detection, World Scientific, Singapore.
11.0 | Joomla was converted to version 5 and updated to 5.5.3 |
September.2025 |
10.20 | Added FAQ section for registered users |
February.2025 |
10.16 | Physics Handbook updated on nuclear stopping power and other topics |
April.2024 |
10.14 | Website is operated on a virtual sever at the Italian Space Agency, ASI. |
March.2024 |
10.13 | Gaussian beam calculator is available |
February.2024 |
10.12 | Logo and banner revision |
January.2024 |
10.11 | Calculators for residual fluences of proton, ions and electrons extented to mono-energetic impiging particles |
November.2023 |
10.10 | Content revisions of sr-niel handbook and website pages updated |
October.2023 |
10.8 | Neutron fluence calculators was updated. Fluence graph, input by user, is now restricted to 20 MeV max. |
October.2023 |
10.7 | The output page of the web calculator for Electronic Stopping Power Calculators and Ionizing Dose Converters for an Electron Spectral Fluence was revised |
October.2023 |
10.6 | Calculator for determine the residual spectral fluence up to high energies for protons and ions traversing a shielding material was revised |
October.2023 |
10.5 | Calculator for determine the residual spectral fluence for electrons traversing a shielding material was revised |
October.2023 |
10.4 | Calculator for determine the residual spectral fluence for protons and ions traversing a shielding material was revised |
October.2023 |
10.3 | Calculator for determine the residual spectral fluence of isotropically distributed electrons traversing a spherical absorber was implemented |
October.2023 |
10.2 | Cited publications page is available |
Spetember.2023 |
10.1 | Calculator for determine the residual spectral fluence up to high energy of isotropically distributed protons and ions traversing a spherical absorber was implemented |
Spetember.2023 |
10.0 | Calculator for determine the residual spectral fluence of isotropically distributed protons and ions traversing a spherical absorber was implemented |
Spetember.2023 |
9.6 | NIEL Calculators modified. New warnings added for hadronic contribution |
August.2023 |
9.5 | website on-line on a virtual machine cloud at CINECA |
July.2023 |
9.3 | Residual energy calculators were updated to optimize the number of steps in calculation |
May.2023 |
9.2 | Statistics on calculators request are available |
April.2023 |
9.1 | "Who in sr-niel" updated |
February.2023 |
9.0 | New NJOY Neutrons NIEL calculators on few selected semiconductors |
July.2022 |
8.5 | Update on webpage "NIEL dose calculation for neutron using Robinson and Akkerman partition functions" |
July.2022 |
8.4 | New webpage on Comparison of damage functions and Doses obtained with NJOY-2021 with respect to those obtained from NJOY-2016 |
July.2022 |
8.3 | New webpage on Results for NIEL in silicon absorber from NJOY 2021 and ASTM-E722 versions |
July.2022 |
8.2 | SR-NIEL and displacement stopping power for Neutrons pages revised |
July.2022 |
8.1 | Default threshold energy set to solar cells determined values for electrons and ions niel calculators |
July.2022 |
8.0 | Neutron damage functions available with NJOY 2021 (ENDF/B.VIII.0) |
June.2022 |
7.5 | New version numbering |
May.2022 |
SR-NIEL – 7 numbering was introduced with version 7.5. The TID and TNID doses, SEE calculations were included in sr-niel website previous versions, including the access to CRs spectral flunces from HelMod-4 and Geant4 simulations.
7.7.4 | ASTM E722-19 included in neutrons calculators |
May.2022 |
7.7.3 | SEE calculator for spectral fluence updated |
March.2022 |
7.7.2 | SEE recoil calculators interface updated |
March.2022 |
7.7.1 | Joomla 4 additional adjustments |
December.2021 |
7.7.0 | Joomla was converted to version 4 |
December.2021 |
7.6.2 | Joomla updated to 3.10.3 version |
November.2021 |
7.6.1 | Joomla updated to 3.10.2 version |
October.2021 |
7.6.0 | New SEE Calculator for devices exposed to fluences of isotropically distributed protons and ions |
September.2021 |
7.5.5 | New version of the residual spectral fluence calculator for electrons |
September.2021 |
7.5.4 | New version of the residual spectral fluence calculators for proton and ions with extension to high energies |
September.2021 |
7.5.3 | New version of the residual spectral fluence calculators for proton and ions |
September.2021 |
7.5.2 | New version of the Weibull fit calculator |
April.2021 |
7.5.1 | Joomla updated to 3.9.26 version |
April.2021 |
7.5.0 | SEE isotropic cross section calculator is available |
April.2021 |
7.4.0 | New website installation with Geant4 capabilities (Centos 7). |
April.2021 |
7.3.2 | Weibull fit calculator has been updated to get better results. |
April.2021 |
7.3.1 | Title in the home page has been updated |
April.2021 |
7.3.0 | Fluence calculators modified to accept fluence with reversed order in energy |
February.2021 |
7.2.0 | Joomla updated to version 3.9.23 |
January.2021 |
7.1.0 | New calculator for SEE due to recoil of target nuclei for spectral fluence available |
January.2021 |
7.0.0 | New calculator for SEE due to recoil of target nuclei available |
December.2020 |
6.9.1 | Fixed the lowest energy limit for recoil calculators |
December.2020 |
6.9.0 | Joomla updated to version 3.9.19 |
July.2020 |
6.8.0 | SEE Calculator for Helmod fluences added |
July.2020 |
6.7.1 | Fixed issue related to null value for SEE cross section fit calculator |
June.2020 |
6.7.0 | SEE cross section fit with Weibull function available |
June.2020 |
6.6.0 | Helmod spectral fluence calculators added |
May.2020 |
6.5.0 | SEE Calculators added |
May.2020 |
6.4.2 | Items in handbook updated. Cross links with ASIF, Helmod, Geomagsphere added |
May.2020 |
6.4.1 | Restricted energy loss calculators updated (no more gap in calculation) |
May.2020 |
6.4.0 | Results section revised with electronic stopping power data |
April.2020 |
6.3.3 | Restricted energy loss for ASIF TID for protons and ions available |
April.2020 |
6.3.2 | Restricted energy loss for fluence of protons and ions available |
April.2020 |
6.3.1 | Results page updated with electronic stopping power and restriced energy loss in SR-Framework |
April.2020 |
6.3.0 | Restricted energy loss for protons and ions available |
April.2020 |
6.2.4 | some Sternheimer compounds available for high energy extension of the electronic stopping powers |
March.2020 |
6.2.3 | High energy extension of the ASIF TID converter for protons and ions |
Feb.2020 |
6.2.2 | High energy extension of the electronic stopping powers for protons and ions traversing a shielding material |
Feb.2020 |
6.2.1 | High energy extension of the electronic stopping powers for fluence of protons and ions |
Feb.2020 |
6.2.0 | High energy extension of the electronic stopping powers of protons and ions |
Feb.2020 |
6.1.0 | SRIM based calculators support now gas targets |
Jan.2020 |
6.0.7 | new page in handbook about Helmod in SR-NIEL framework |
Oct.2019 |
6.0.6 | new page in handbook about SEE dependence on solar modulation models |
Oct.2019 |
6.0.5 | new page in handbook about LET distributions for Fe-ions |
Oct.2019 |
6.0.4 | new page in handbook about TID and SEEs when restricted energy-loss is employed |
Oct.2019 |
6.0.3 | new page in handbook about the restricted energy-loss treatment within SR-NIEL framework |
Oct.2019 |
6.0.2 | new page in handbook about the particle flux as a function of particle energy or electronic stopping power |
Aug.2019 |
6.0.1 | Incident particle mass can be modified in SRIM based calculators |
Jun.2019 |
6.0.0 | Electronic stopping power calculators for spectral fluence implemented |
Jun.2019 |
5.7.0 | Residual energy for electrons traversing a material is available |
Jun.2019 |
5.6.0 | Radiative contribution added to electronic stopping power for electrons |
May.2019 |
5.5.1 | Residual energy for protons and ions traversing a material is available |
May.2019 |
5.5.0 | Residual spectral fluence for protons and ions traversing a material is available |
May.2019 |
5.1.1 | Change table title "Dose" to "Ionizing Dose" for electronic stopping power calculators |
Apr.2019 |
5.1.0 | Nuclear recoil probability calculators for spectral fluence added |
Apr.2019 |
5.0.1 | Electronic Stopping Power, Deposited Energy and Fermi Plateau of Massive Particles with z=1 in Silicon |
Mar.2019 |
5.0.0 | New target elements for NJOY based calculators |
Mar.2019 |
4.6.1 | Summary page for elements for NJOY based calculators |
Feb.2019 |
4.6.0 | New target elements for NJOY based calculators |
Jan.2019 |
4.5.1 | NIEL dose calculators for neutron spectral fluence were revised |
Jan.2019 |
4.5.0 | New target elements for NJOY based calculators |
Dec.2018 |
4.4.0 | ASIF TNID calculator for neutrons implemented |
Oct.2018 |
4.3.0 | ASIF TID converter for protons and ions implemented |
Oct.2018 |
4.2.0 | ASIF TNID calculator for protons and ions implemented |
Oct.2018 |
4.1.0 | Upper limit set for electronic stopping power to dose converter for electrons |
Oct.2018 |
4.0.1 | Minor website improvements |
Sep.2018 |
4.0.0 | Physics handbook embedded in sr-niel website |
Sep.2018 |
3.9.8 | Dose calculators for spectral fluence updated |
Sep.2018 |
3.9.7 | Website restyled |
Sep.2018 |
3.9.6 | Hadronic NIEL estimation included in test58 |
Jul.2018 |
3.9.5 | Comparison of neutron damage function in Bi and Si added |
Feb.2018 |
3.9.4 | test58 revised for Geant4 version 10.4 |
Jan.2018 |
3.9.3 | Geant4 electrons class and test58 updated |
Oct.2017 |
3.9.2 | B,Bi,Cl,Tl added as target for NJOY Neutrons NIEL calculators. |
Sep.2017 |
3.9.1 | Neutrons long write-up pages updated with NJOY 2016 values along with NJOY 2012.50 |
Jun.2017 |
3.9.0 | Neutron NJOY calculators updated with NJOY 2016 values. Cu,Hg,Pb,S,Sn also added as possible target |
May.2017 |
3.8.0 | Predefined compound semiconductors and alloy systems implemented as target |
May.2017 |
3.7.0 | New revision for hadronic contribution to NIEL |
May.2017 |
3.6.1 | test58 updated |
Mar.2017 |
3.6.0 | NIEL hadronic contribution revised |
Feb.2017 |
3.5.4 | example test58 for Geant4 ver. 10.3 is available for download |
Dec.2016 |
3.5.3 | Single scattering classes for Geant4 ver. 10.3 are available for download |
Dec.2016 |
3.5.2 | Hadronic NIEL contribution added for silicon absorbers and incoming proton energies up to 24 GeV and added a no scaling option for hadronic contribution. |
Oct.2016 |
3.5.1 | Additional target nuclei added in NJOY based calculators |
Oct.2016 |
3.5.0 | Hadronic contribution for inpinging α particle is available in NIEL calculators |
Sep.2016 |
3.4.2 | NIEL Dose Calculator for Electrons, Protons & Ions spectral fluence using both Robinson and Akkerman partition function is available for registered users |
Sep.2016 |
3.4.1 | Cross reference with http://srnielhandbook.altervista.org added |
Sep.2016 |
3.4.0 | NIEL Dose Calculator for Electrons, Protons & Ions spectral fluence is available. |
Jul.2016 |
3.3.0 | NIEL Dose Calculator for Neutrons spectral fluence obtained with software NJOY is available for registered users |
Jul.2016 |
3.2.0 | Neutrons NIEL Calculators from values obtained with software NJOY is available for registered users |
Jul.2016 |
3.1.0 | Detailed comparisons are currently available regarding the usage of Akkerman and Robinson partition functions for electrons, protons, ions and neutrons. |
Jun.2016 |
3.0.2 | It's now possible to specify different recoil and target nucleus in the partition function calculator |
Jun.2016 |
3.0.1 | Added table of printed values to the partition function calculator |
Jun.2016 |
3.0.0 | NIEL Calculators employing Akkerman partition function is available for registered users. |
May.2016 |
2.8.0 | New site SR-NIEL handbook is available. Some links were moved on the top panel. |
Feb.2016 |
2.7.1 | ASTM-E722-14 damage function is now included in neutrons calculators |
Feb.2016 |
2.7.0 | Electronic Stopping Power Calculator for Electrons is included. |
Dec.2015 |
2.6.0 | Electronic Stopping Power Calculator for protons and ions supports now a compounds list |
Dec.2015 |
2.5.0 | SR-NIEL Treatment in Geant4 included |
Nov. 2015 |
2.1.2 | Total NIEL Dose for Neutrons is included |
July 2015 |
2.1.1 | Hardness Parameter Calculator is now included |
May 2015 |
2.1.0 | NIEL Calculator supports now neutrons in Si and GaAs |
May 2015 |
2.0.4 | Electronic Stopping Power Calculator supports now compounds with 10 elements |
Mar. 2015 |
2.0.3 | Energetic Nuclear Recoil Calculators support now compounds with 10 elements. |
Mar. 2015 |
2.0.2 | Nuclear Stopping Power Calculators support now compounds with 10 elements. |
Mar. 2015 |
2.0.1 | NIEL Calculators support now compounds with 10 elements. |
Mar. 2015 |
2.0.0 | Electronic Stopping Power for electrons, protons and ions included. |
Feb. 2015 |
1.5.4 | Element Fraction included in Calculators. |
Feb. 2015 |
1.5.3 | Dose included in the NIEL Calculator. |
Dec. 2014 |
1.5.2 | Partition function calculator implemented. |
Dec. 2014 |
1.5.1 | Energetic Recoil Calculator Added. |
Dec. 2014 |
1.5.0 | Web program and documentation online. |
Nov. 2014 |
Suggested Bibliography for Displacement Damage, SR-NIEL–7 Treatments and Methodologies, Electronic and Nuclear Stopping Powers
Non Ionizing Energy Loss (NIEL), Displacement Damage, Electronic and Nuclear Stopping Power Treatments, TNID and TID Doses, trapping centers: Bibliography
C. Baur, M. Gervasi, P. Nieminen, S. Pensotti, P.G. Rancoita, M. Tacconi, (2014), NIEL dose dependence for solar cells irradiated with electrons and protons, Proc. of the 14th ICATPP, September 23--27 2013, Villa Olmo, Como, Italy, S. Giani, C. Leroy, L. Price, P.G. Rancoita and R. Ruchti, Editors, World Scientific, Singapore, 698-713; ISBN: 978-981-4603-15-7;
http://www.worldscientific.com/doi/pdf/10.1142/9789814603164_0111
http://arxiv.org/abs/1312.0402
E.Borchi, C.Bertrand, C.Leroy, M.Bruzzi, C.Furetta, R.Paludetto, P.G.Rancoita, L.Vismara and P.Giubellino, DLTS measurements of majority carriers traps in neutron irradiated n-type silicon detectors, Nucl.Instr. and Meth.in Phys. Res. A 279 (1989), 277; https://doi.org/10.1016/0168-9002(89)91093-0
M.J. Boschini, C. Consolandi, M. Gervasi, S.Giani, D.Grandi, V. Ivanchenko and P.G. Rancoita, (2010), Geant4-based application development for NIEL calculation in the Space Radiation Environment, Proc. of the 11th ICATPP Conference, October 5-9 2009, Villa Olmo, Como, Italy, World Scientific, Singapore, 698-708, IBSN: 10-981-4307-51-3; http://www.worldscientific.com/doi/pdf/10.1142/9789814307529_0113
M.J. Boschini, C. Consolandi, M. Gervasi, S. Giani, D. Grandi, V. Ivantchenko, S. Pensotti, P.G. Rancoita, M. Tacconi, (2011), Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particle from Low Energy up to relativistic regime in Space Radiation Environment, Proc. of the 12th ICATPP Conference, October 7-8 2010, Villa Olmo, Como, Italy, World Scientific, Singapore, 9-23, IBSN: 978-981-4329-02-6;
http://www.worldscientific.com/doi/pdf/10.1142/9789814329033_0002
http://arxiv.org/pdf/1011.4822v7.pdf
M.J. Boschini, C. Consolandi, M. Gervasi, S. Giani, D. Grandi, V. Ivanchenko, P. Nieminem, S. Pensotti, P.G. Rancoita and M. Tacconi, (2012), Nuclear and Non-Ionizing Energy-Loss of electrons with low and relativistic energies in materials and space environment, Proc. of the 13th ICATPP Conference, October 3-7 2011, Villa Olmo, Como, Italy, World Scientific, Singapore, 961-982, IBSN: 978-981-4405-06-5;
http://www.worldscientific.com/doi/pdf/10.1142/9789814405072_0147
http://arxiv.org/pdf/1111.4042v4.pdf
M.J. Boschini, C. Consolandi, P.G. Fallica, M. Gervasi, D. Grandi, M. Mazzillo, S. Pensotti, P.G. Rancoita, D. Sanfilippo, M. Tacconi and G. Valvo, Electrical Characterization of SiPM as a Function of Test Frequency and Temperature, Proc. of the 13th ICATPP Conference on Cosmic Rays for Particle and Astroparticle Physics, October 3--7 (2011), Villa Olmo, Como, Italy, S. Giani, C. Leroy, L. Price, P.G. Rancoita and R. Ruchri, Editors, World Scientific, Singapore (2012), 663, ISBN: 978-981-4405-06-5; arXiv 1112.0107
M.J. Boschini, C. Consolandi, M. Gervasi, S. Giani, D. Grandi, V. Ivanchenko, P. Nieminem, S. Pensotti, P.G. Rancoita, M. Tacconi, (2013), An expression for the Mott cross section of electrons and positrons on nuclei with Z up to 118, Rad. Phys. Chem. 90, 39-66; doi: 10.1016/j.radphyschem.2013.04.020,
http://www.sciencedirect.com/science/article/pii/S0969806X13002454
http://arxiv.org/pdf/1304.5871v1.pdf
R. Campesato, C. Baur, M. Casale, M. Gervasi, E. Gombia, E. Greco, A. Kingma, P.G. Rancoita, D. Rozza, M. Tacconi (2018), NIEL DOSE and DLTS Analyses on Triple and Single Junction solar cells irradiated with electrons and protons, Proceedings of 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, Hawaii, June 10-15, 2018; Publication Year: 2018, p. 3768-3772, doi: 10.1109/PVSC.2018.8548237; available at https://arxiv.org/abs/1811.11583
R. Campesato, C. Baur, M. Casale, M. Gervasi, E. Gombia, E. Greco, A. Kingma, P.G. Rancoita, D. Rozza, M. Tacconi (2018), Effects of irradiation on Triple and Single Junction InGaP/GaAs/Ge solar cells, Proceedings of the 35th European PV Solar Energy Conference, Brussels, 24-28 September 2018, 959-964, doi: 10.4229/35thEUPVSEC20182018-4CO.5.4; available at http://arxiv.org/abs/1809.07157
R. Campesato, C. Baur, M. Carta, M. Casale, D. Chiesa, M. Gervasi, E. Gombia, E. Greco, A. Kingma, M. Nastasi, E. Previtali, P.G. Rancoita, D. Rozza, E. Santoro, M. Tacconi (2019), NIEL Dose Analysis on triple and single junction InGaP/GaAs/Ge solar cells irradiated with electrons, protons and neutrons, Proceedings of the 2019 IEEE 46th Photovoltaic Specialist Conference (PVSC), June 16-21 (2019), Chicago (USA), Book Series: IEEE Photovoltaic Specialists Conference, pages 2381-2384, doi: 10.1109/PVSC40753.2019.8980581; available at https://arxiv.org/abs/1911.08900
A.Colder, N.Croitoru, P.D’Angelo, M. De Marchi, G. Fallica, S. Leonardi, M. Levalois, S. Marcolongo, P. Marie, R. Modica, P.G. Rancoita and A. Seidman, Study of Radiation Effects on Bipolar Transistors, Nucl. Instr. and Meth. in Phys. Res. B 179 (2001), 397; doi: https://doi.org/10.1016/S0168-583X(01)00582-1
C. Consolandi, P.D’Angelo, G. Fallica, R. Modica, R. Mangoni, S. Pensotti and P.G. Rancoita, (2006), Systematic Investigation of Monolithic Bipolar Transistors Irradiated with Neutrons, Heavy Ions and Electrons for Space Applications, Nucl. Instr. and Meth. in Phys. Res. B 252 (2006), 276; http://www.sciencedirect.com/science/article/pii/S0168583X0600913X
N.Croitoru, R.Dahan, P.G.Rancoita, M.Rattaggi, G.Rossi and A.Seidman, Study of resistivity and majority carrier concentration of silicon detectors damaged by neutron irradiation up to 1016n/cm2, Nucl.Instr. and Meth.in Phys. Res. B 124 (1997), 542—548: doi: https://doi.org/10.1016/S0168-583X(97)00055-4
G.Golan, E.Rabinovich, A.Inberg, A.Axelevitch, G.Lubarsky, P.G.Rancoita, M. Demarchi, A.Seidman and N.Croitoru, Inversion phenomenon as a result of junction damages in neutron irradiated silicon detectors, Microelectronics Reliability 41 (2000), 67; doi: https://doi.org/10.1016/S0026-2714(00)00212-2
Hancock, S., James, F., Movchet, J., Rancoita, P.G. and Van Rossum, L. (1983). Energy loss and energy straggling of protons and pions in the momentum range 0.7 to 115 GeV/c, Phys. Rev. A 28, 615--620; doi: https://doi.org/10.1103/PhysRevA.28.615
Hancock, S., James, F., Movchet, J., Rancoita, P.G. and Van Rossum, L. (1984). Energy-loss distributions for single particles and several particles in a thin silicon absorber, Nucl.Instr. and Meth. in Phys. Res. B 1, 16, doi: 10.1016/0168-583X(84)90472-5.
C.Leroy and P.G.Rancoita, Physics of Cascading Shower Generation and Propagation in Matter: Principles of High Enery, Ultra High Energy and Compensating Calorimetry, Reports on Progress in Physics 63 (2000), 505-606; https://dx.doi.org/10.1088/0034-4885/63/4/202
C. Leroy and P.G. Rancoita (2007), Particle Interaction and Displacement Damage in Silicon Devices operated in Radiation Environments Reports on Progress in Physics 70, 493-625;
http://iopscience.iop.org/0034-4885/70/4/R01/
C. Leroy and P.G. Rancoita (2011), Principles of Radiation Interaction in Matter and Detection - 3rd Edition -, World Scientific, Singapore, ISBN-978-981-4360-51-7;
http://www.worldscientific.com/worldscibooks/10.1142/8200
C. Leroy and P.G. Rancoita (2012), Silicon Solid State Devices and Radiation Detection, World Scientific, Singapore, ISBN-978-981-4390-0-0;
http://www.worldscientific.com/worldscibooks/10.1142/8383.
C. Leroy and P.G. Rancoita (2016), Principles of Radiation Interaction in Matter and Detection - 4th Edition -, World Scientific. Singapore, ISBN-978-981-4603-18-8 (printed); ISBN.978-981-4603-19-5 (ebook);
https://www.worldscientific.com/worldscibooks/10.1142/9167#t=aboutBook; it is also partially accessible via google books.
Z. Li, H.W.Kraner, E.Verbiskaya, V.Eremin, A.Ivanov, M.Rattaggi, P.G.Rancoita, F.Rubinelli, S.J.Fonash, C.Dale and P.Marshall, Investigation of the Oxigen-Vacancy (A-center) defect complex profile in neutron irradiated high resistivity silicon junction particle detectors, IEEE Trans. on Nucl. Science, vol 39, No.6 (1992), 1730; doi: 10.1109/23.211360
Rancoita, P.G. (1984). Silicon detectors and elementary particle physics, J. Phys. G: Nucl.Phys. 10, 299–319, doi:10.1088/0305-4616/10/3/007.
P.G.Rancoita and A.Seidman (1982), Silicon detectors in high energy physics : physics and applications, La Rivista del Nuovo Cimento vol.5, N.7, 1—75; doi: https://doi.org/10.1007/BF02740017
The following publications are those cited within calculators webpages. Those ones cited in sr-niel framework physics handbook are usually (but not always) found listed at the bottom of corresponding webpage.
A. Akkerman and J. Barak (2006). New Partition Factor Calculations for Evaluating the Damage of Low Energy Ions in Silicon, IEEE Trans. on Nucl. Sci. vol. 53, 3667; doi: https://doi.org/10.1109/TNS.2006.884382.
T. Angelescu et al. (1994).A neutron irradiation facility for damage studies, Nucl. Instr. and Meth. in Phys. Res., vol. 345, 2, pp. 303-307: doi: https://doi.org/10.1016/0168-9002(94)91006-5
ASTM E722-19 (2019). Standard Practice for Characterizing Neutron Fluence Spectra in Terms of an Equivalent Monoenergetic Neutron Fluence for Radiation-Hardness Testing of Electronics (https://www.astm.org/catalogsearch/result/?q=E722-19); see also previously published standards: ASTM E722–09 (2009); ASTM E722-14 (2014).
S. Bartocci, R. Battiston, W. J. Burger et al., Galactic Cosmic-Ray Hydrogen Spectra in the 40–250 MeV Range Measured by the High-energy Particle Detector (HEPD) on board the CSES-01 Satellite between 2018 and 2020, Astrophys. J. 901, 8; https://doi.org/10.3847/1538-4357/abad3e
C. Baur, M. Gervasi, P. Nieminen, S. Pensotti, P.G. Rancoita, M. Tacconi, (2014)
NIEL dose dependence for solar cells irradiated with electrons and protons, Proc. of the 14th ICATPP, September 23--27 2013, Villa Olmo, Como, Italy, S. Giani, C. Leroy, L. Price, P.G. Rancoita and R. Ruchti, Editors, World Scientific, Singapore, 698-713; ISBN:
978-981-4603-15-7;
http://www.worldscientific.com/doi/pdf/10.1142/9789814603164_0111
http://arxiv.org/abs/1312.0402
E.Borchi, C.Bertrand, C.Leroy, M.Bruzzi, C.Furetta, R.Paludetto, P.G.Rancoita, L.Vismara and P.Giubellino, DLTS measurements of majority carriers traps in neutron irradiated n-type silicon detectors, Nucl.Instr. and Meth.in Phys. Res. A 279 (1989), 277; https://doi.org/10.1016/0168-9002(89)91093-0
M.J. Boschini, C. Consolandi, M. Gervasi, S.Giani, D.Grandi, V. Ivanchenko and P.G. Rancoita, (2010)
Geant4-based application development for NIEL calculation in the Space Radiation Environment, Proc. of the 11th ICATPP Conference, October 5-9 2009, Villa Olmo, Como, Italy, World Scientific, Singapore, 698-708, IBSN: 10-981-4307-51-3;
http://www.worldscientific.com/doi/pdf/10.1142/9789814307529_0113
M.J. Boschini, C. Consolandi, M. Gervasi, S. Giani, D. Grandi, V. Ivantchenko, S. Pensotti, P.G. Rancoita, M. Tacconi, (2011), Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particle from Low Energy up to relativistic regime in Space Radiation Environment, Proc. of the 12th ICATPP Conference, October 7-8 2010, Villa Olmo, Como, Italy, World Scientific, Singapore, 9-23, IBSN: 978-981-4329-02-6;
http://www.worldscientific.com/doi/pdf/10.1142/9789814329033_0002
http://arxiv.org/pdf/1011.4822v7.pdf
M.J. Boschini, C. Consolandi, P.G. Fallica, M. Gervasi, D. Grandi, M. Mazzillo, S. Pensotti, P.G. Rancoita, D. Sanfilippo, M. Tacconi and G. Valvo, Electrical Characterization of SiPM as a Function of Test Frequency and Temperature, Proc. of the 13th ICATPP Conference on Cosmic Rays for Particle and Astroparticle Physics, October 3--7 (2011), Villa Olmo, Como, Italy, S. Giani, C. Leroy, L. Price, P.G. Rancoita and R. Ruchri, Editors, World Scientific, Singapore (2012), 663, ISBN: 978-981-4405-06-5; arXiv 1112.0107
M.J. Boschini, C. Consolandi, M. Gervasi, S. Giani, D. Grandi, V. Ivanchenko, P. Nieminem, S. Pensotti, P.G. Rancoita and M. Tacconi, (2012),
Nuclear and Non-Ionizing Energy-Loss of electrons with low and relativistic energies in materials and space environment, Proc. of the 13th ICATPP Conference, October 3-7 2011, Villa Olmo, Como, Italy, World Scientific, Singapore, 961-982, IBSN: 978-981-4405-06-5;
http://www.worldscientific.com/doi/pdf/10.1142/9789814405072_0147
http://arxiv.org/pdf/1111.4042v4.pdf
M.J. Boschini, C. Consolandi, M. Gervasi, S. Giani, D. Grandi, V. Ivanchenko, P. Nieminem, S. Pensotti, P.G. Rancoita, M. Tacconi, (2013),
An expression for the Mott cross section of electrons and positrons on nuclei with Z up to 118, Rad. Phys. Chem. 90, 39-66; doi: 10.1016/j.radphyschem.2013.04.020,
http://www.sciencedirect.com/science/article/pii/S0969806X13002454
http://arxiv.org/pdf/1304.5871v1.pdf
Boschini et al (2024), Fast and accurate evaluation of deep-space galactic cosmic ray fluxes with HelMod-4/CUDA, M. J. Boschini, G. Cavallotto, S. Della Torre, M. Gervasi, G. La Vacca, P. G. Rancoita, M. Tacconi, Advances in Space Research, April 2024, In Press; https://doi.org/10.1016/j.asr.2024.04.021
M.Bosetti, N.Croitoru, C.Furetta, C.Leroy, S.Pensotti, P.G.Rancoita, M.Rattaggi, M.Redaelli, A.Seidman, DLTS measurements of Energetic levels generated in silicon detectors, Nucl. Instr. and Meth. in Phys. Res. A 361 (1995), 461--465; doi: https://doi.org/10.1016/0168-9002(95)00277-4
R. Campesato, C. Baur, M. Casale, M. Gervasi, E. Gombia, E. Greco, A. Kingma, P.G. Rancoita, D. Rozza, M. Tacconi (2018), NIEL DOSE and DLTS Analyses on Triple and Single Junction solar cells irradiated with electrons and protons, Proceedings of 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, Hawaii, June 10-15, 2018; Publication Year: 2018, p. 3768-3772, doi: 10.1109/PVSC.2018.8548237; available at https://arxiv.org/abs/1811.11583
R. Campesato, C. Baur, M. Casale, M. Gervasi, E. Gombia, E. Greco, A. Kingma, P.G. Rancoita, D. Rozza, M. Tacconi (2018), Effects of irradiation on Triple and Single Junction InGaP/GaAs/Ge solar cells, Proceedings of the 35th European PV Solar Energy Conference, Brussels, 24-28 September 2018, 959-964, doi: 10.4229/35thEUPVSEC20182018-4CO.5.4; available at http://arxiv.org/abs/1809.07157
R. Campesato, C. Baur, M. Carta, M. Casale, D. Chiesa, M. Gervasi, E. Gombia, E. Greco, A. Kingma, M. Nastasi, E. Previtali, P.G. Rancoita, D. Rozza, E. Santoro, M. Tacconi (2019), NIEL Dose Analysis on triple and single junction InGaP/GaAs/Ge solar cells irradiated with electrons, protons and neutrons, Proceedings of the 2019 IEEE 46th Photovoltaic Specialist Conference (PVSC), June 16-21 (2019), Chicago (USA), Book Series: IEEE Photovoltaic Specialists Conference, pages 2381-2384, doi: 10.1109/PVSC40753.2019.8980581; available at https://arxiv.org/abs/1911.08900
D. Codegoni, A.Colder, N.Croitoru, P.D’Angelo, M. De Marchi, G. Fallica, S. Leonardi, M. Levalois, S. Marcolomgo, P. Marie, R. Modica, P.G. Rancoita and A. Seidman, Investigation of Irradiated Monolithic Transistors for Space Applications, Nucl. Instr. and Meth. in Phys. Res. B 217 (2004), 65; doi https://doi.org/10.1016/j.nimb.2003.08.044
A. Colder, N. Croitoru, P. D’Angelo, M. De Marchi, G. Fallica, S. Leonardi, M. Levalois, S. Marcolongo, P. Marie, R. Modica, P.G. Rancoita and A. Seidman, Study of Radiation Effects on Bipolar Transistors, Nucl. Instr. and Meth. in Phys. Res. B 179 (2001), 397; doi: https://doi.org/10.1016/S0168-583X(01)00582-1
C. Consolandi, P.D’Angelo, G. Fallica, R. Modica, R. Mangoni, S. Pensotti and P.G. Rancoita, (2006), Systematic Investigation of Monolithic Bipolar Transistors Irradiated with Neutrons, Heavy Ions and Electrons for Space Applications, Nucl. Instr. and Meth. in Phys. Res. B 252 (2006), 276, doi:10.1016/j.nimb.2006.08.018, http://www.sciencedirect.com/science/article/pii/S0168583X0600913X
N.Croitoru, R.Dahan, P.G.Rancoita, M.Rattaggi, G.Rossi and A.Seidman, Study of resistivity and majority carrier concentration of silicon detectors damaged by neutron irradiation up to 1016n/cm2, Nucl.Instr. and Meth.in Phys. Res. B 124 (1997), 542—548: doi: https://doi.org/10.1016/S0168-583X(97)00055-4
S. Della Torre, G. Cavallotto, D. Besozzi, M. Gervasi, G. La Vacca, M. S. Nobile and P.G. Rancoita (2023), Advantages of GPU-accelerated approach for solving the Parker equation in the heliosphere, POS (ICRC2023) 1290;https://pos.sissa.it/444/1290/pdf
[ECSS-E-ST-10-12C] European Cooperation for Space Standardization, "Methods for the calculation of radiation received and its effects, and a policy for design margins", 15 November 2008.
[ECSS-E-HB-10-12A] European Cooperation for Space Standardization, "Calculation of radiation and its effects and margin policy handbook", 17 December 2010.
[ECSS-E-ST-10-04C Rev. 1] European Cooperation for Space Standardization, on "Space Environment: Technical Report" ECSS (2020);
https://ecss.nl/standard/ecss-e-st-10-04c-rev-1-space-environment-15-june-2020/
Esbensen, H. et al. (1978). Random and channeled energy loss in thin germanium and silicon crystals for positive and negative 2-15-GeV/c pions, kaons, and protons, Phys. Rev. B 18, 1039; doi: https://doi.org/10.1103/PhysRevB.18.1039
J.M. Fernandez-Varea, R. Mayol and F. Salvat (1993). Cross sections for elastic scattering of fast electrons and positrons by atoms, Nucl. Instr. and Meth. in Phys. Res. B82, 39-45; doi: https://doi.org/10.1016/0168-583X(93)95079-K
G.Golan, E.Rabinovich, A.Inberg, A.Axelevitch, G.Lubarsky, P.G.Rancoita, M. Demarchi, A.Seidman and N.Croitoru, Inversion phenomenon as a result of junction damages in neutron irradiated silicon detectors, Microelectronics Reliability 41 (2000), 67; doi: https://doi.org/10.1016/S0026-2714(00)00212-2ttps://doi.org/10.1016/S0026-2714(00)00212-2
B.Hahn et al. (1956). High-Energy Electron Scattering and the Charge Distributions of Selected Nuclei, Phys. Rev. 101 1131; doi: https://doi.org/10.1103/PhysRev.101.1131
Hancock, S., James, F., Movchet, J., Rancoita, P.G. and Van Rossum, L. (1983). Energy loss and energy straggling of protons and pions in the momentum range 0.7 to 115 GeV/c, Phys. Rev. A 28, 615--620; doi: https://doi.org/10.1103/PhysRevA.28.615
Hancock, S., James, F., Movchet, J., Rancoita, P.G. and Van Rossum, L. (1984). Energy-loss distributions for single particles and several particles in a thin silicon absorber, Nucl.Instr. and Meth. in Phys. Res. B 1, 16, doi: 10.1016/0168-583X(84)90472-5.
M. Huhtinen (2002). Simulation of non-ionising energy loss and defect formation in silicon, Nucl. Instr. and Meth. A 491, 194-215; doi: https://doi.org/10.1016/S0168-9002(02)01227-5
ICRUM - International Commission on Radiation Units and Measurements - (1984), Stopping Powers for Electroncs and Positrons, ICRU Report 37, Bethesda, MD; doi: https://doi.org/10.1093/jicru_os19.2.iii
ICRUM - International Commission on Radiation Units and Measurements - (1993), Stopping Powers and Ranges for Protons and Alpha Particles, ICRU Report 49, Bethesda, MD; doi: https://doi.org/10.1093/jicru_os25.2.iii; webaddress: https://www.icru.org/report/stopping-power-and-ranges-for-protons-and-alpha-particles-report-49/
P. Jiggens, D. Heynderickx, I. Sandberg, P. Truscott, O. Raukunen and R. Vainio (2018). Updated Model of the Solar Energetic Proton Environment in Space, J. Space Weather Space Clim. 8: A31 (22pp); https://doi.org/10.1051/swsc/2018010
I. Jun et al. (2003). NIEL for heavy ions: an analytical approach, IEEE Trans. on Nucl. Sci 50, 1924-1928; doi: https://doi.org/10.1109/TNS.2003.820762
I. Jun et al. (2004). Alpha particle nonionizing energy loss (NIEL), IEEE Trans. on Nucl. Sci 51, 3207-3210; doi: https://doi.org/10.1109/TNS.2004.839150
I. Jun (2017), Private communication regarding hadronic NIEL contribution. See also the web page "Hadronic NIEL contribution for protons and alpha particles".
C. Leroy and P.G. Rancoita (2007), Particle Interaction and Displacement Damage in Silicon Devices operated in Radiation Environments Reports on Progress in Physics 70, 493-625, doi:10.1088/0034-4885/70/4/R0
http://iopscience.iop.org/0034-4885/70/4/R01/
C. Leroy and P.G. Rancoita (2011), Principles of Radiation Interaction in Matter and Detection - 3rd Edition -, World Scientific, Singapore, ISBN-978-981-4360-51-7;
http://www.worldscientific.com/worldscibooks/10.1142/8200
C. Leroy and P.G. Rancoita (2012), Silicon Solid State Devices and Radiation Detection, World Scientific, Singapore, ISBN-978-981-4390-0-0;
http://www.worldscientific.com/worldscibooks/10.1142/8383.
C. Leroy and P.G. Rancoita (2016), Principles of Radiation Interaction in Matter and Detection - 4th Edition -, World Scientific. Singapore, ISBN-978-981-4603-18-8 (printed); ISBN.978-981-4603-19-5 (ebook);
https://www.worldscientific.com/worldscibooks/10.1142/9167#t=aboutBook; it is also partially accessible via google books.
Z. Li, H.W.Kraner, E.Verbiskaya, V.Eremin, A.Ivanov, M.Rattaggi, P.G.Rancoita, F.Rubinelli, S.J.Fonash, C.Dale and P.Marshall, Investigation of the Oxigen-Vacancy (A-center) defect complex profile in neutron irradiated high resistivity silicon junction particle detectors, IEEE Trans. on Nucl. Science, vol 39, No.6 (1992), 1730; doi: 10.1109/23.211360
K.L. Luke and M.G. Buehler, "An exact, closed-form expression of the integral chord-length distribution for the calculation of single-event upsets induced by cosmic rays", J. Appl. Phys. 64 (1988), 5132; https://doi.org/10.1063/1.342420
M.J. Norgett, M. Robinson and I.M. Torrens (1975), Nucl. Engin. and Des. 33, 50; https://doi.org/10.1016/0029-5493(75)90035-7.
K.W. Ogilvie, M. A. Coplan (1995). Solar wind composition, Rev. of Geophysics 33, pages 615-622;
https://articles.adsabs.harvard.edu/pdf/1958ApJ...128..664P
A. Papaioannou, A. Anastasiadis, I. Sandberg and P. Jiggens (2018). Nowcasting of Solar Energetic Particle Events using near real-time Coronal Mass Ejection characteristics in the framework of the FORSPEF tool. J. Space Weather Space Clim. 8: A37 (14pp); https://doi.org/10.1051/swsc/2018024
E.N. Parker (1958). Dynamics of the Interplanetary Gas and Magnetic Fields, Astrophys. J. 128, 664;
https://articles.adsabs.harvard.edu/pdf/1958ApJ...128..664P
E.N. Parker (1965). The passage of energetic charged particles through interplanetary space, Planetary and Space Science 13, Pages 9-49;
https://doi.org/10.1016/0032-0633(65)90131-5
Pratt, R. H., Tseng, H. K., Lee, C. M., Kissel, L., MacCallum, C., and Riley, M. (1977). Bremsstrahlung energy spectra from electrons of kinetic energy 1 keV < T1 < 2000 keV incident on neutral atoms 2 < Z < 92, Atomic Data Nucl. Data Tables 20, 175; doi: https://doi.org/10.1016/0092-640X(77)90045-6. Errata in 26, 477 (1981); https://doi.org/10.1016/0092-640X(81)90015-2.
Price, W.J. (1964). Nuclear Radiation Detection - 2nd Edition -, McGraw-Hill Book Company, New York.
Rancoita, P.G. (1984). Silicon detectors and elementary particle physics, J. Phys. G: Nucl.Phys. 10, 299–319, doi:10.1088/0305-4616/10/3/007.
P.G.Rancoita and A.Seidman (1982), Silicon detectors in high energy physics : physics and applications, La Rivista del Nuovo Cimento vol.5, N.7, 1—75; doi: https://doi.org/10.1007/BF02740017
J. S. Rankin, D. J. McComas, R. A. Leske et al. (2022). Anomalous Cosmic-Ray Oxygen Observations into 0.1 au, Astrophys. J. 925, 9; https://doi.org/10.3847/1538-4357/ac348f
M. Robinson, (1972), The dependence of radiation effects on the primary recoil energy, Proc. Int. Conf. Radiation-Induced Voids in Metal, Albany, NY, 397–429.
Seltzer, S. M. and Berger, M. J. (1985). Bremsstrahlung spectra from electron interactions with screened atomic nuclei and orbital electrons, Nucl. Instr. Meth. B12, 95; doi: https://doi.org/10.1016/0168-583X(85)90707-4
Sternheimer, R.M., Berger, M.J. and Seltzer, S.M. (1984). Density effect for the ionization loss of charged particles in various substances, Atomic Data and Nucl. Data Tables 30, 261; doi: https://doi.org/10.1016/0092-640X(84)90002-0
L. Svalgaard and Y. Kamide (2013), ASYMMETRIC SOLAR POLAR FIELD REVERSALS, APJ 763:23 (6pp); http://dx.doi.org/10.1088/0004-637X/763/1/23
SRIM - The Stopping and Range of Ions in Matter - SRIM-2013
A. Vogt, B. Heber, A. Kopp, M. S. Potgieter and R. D. Strauss (2018). Jovian electrons in the inner heliosphere, Astr. and AstroPhys. 613:A28 (pp8); https://doi.org/10.1051/0004-6361/201731736
K. Whitman et al. (2023), Review of Solar Energetic Particle Prediction Models, Adv. in Space Research 72, Pages 5161-5242;
https://doi.org/10.1016/j.asr.2022.08.006
E. Zeitler and A. Olsen (1956). Screening Effects in Elastic Electron Scattering, Phys. Rev. 136 (1956), A1546-A1552; doi: https://doi.org/10.1103/PhysRev.136.A1546
Yihua Zheng and Rebekah M. Evans (2014). Solar Energetic Particles (SEPs),
https://ccmc.gsfc.nasa.gov/RoR_WWW/SWREDI/2014/SEP_YZheng_20140602.pdf